Giải Bài Toán Fermat: Andrew Wiles- Phần 1 - Người dịch: Alligator
Solving Fermat: Andrew Wiles
Source: The Proof, NOVA online
http://www.pbs.org/wgbh/nova/proof/wiles.html
Andrew Wiles đã cống hiến phần lớn sự nghiệp của ông cho việc chứng minh định lý Fermat cuối cùng (Fermat’s Last Theorem - viết tắt là FLT), bài toán nổi tiếng nhất thế giới. Vào năm 1993, ông đã trở nên nổi tiếng khi công bố một cách chứng minh bài toán, nhưng câu chuyện chưa chấm dứt ở đó; một lỗi sai trong tính toán đã làm lung lay công trình cả đời của ông. Andrew Wiles đã nói chuyện với NOVA và kể lại cách ông đã xử lý chỗ sai lầm, và cuối cùng tiến tới để đạt được hoài bão của đời ông như thế nào.
NOVA: Nhiều khám phá khoa học vĩ đại là kết quả của sự ám ảnh, nhưng trong trường hợp của ông, nỗi ám ảnh đó đã bám lấy ông từ lúc ông còn là một đứa bé.
ANDREW WILES: Tôi lớn lên ở Cambridge, Anh quốc, và tình yêu toán học của tôi đã chớm từ những ngày đầu của thời thơ ấu. Tôi yêu thích giải toán ở trường. Tôi thường đem bài về nhà và tự nghĩ ra những đề bài mới. Nhưng bài toán hay nhất mà tôi đã từng tìm thấy, tôi tìm thấy trong thư viện công cộng trong vùng. Tôi lúc đó chỉ đang xem lướt qua khu vực để các sách toán và tôi tìm thấy một cuốn sách này, toàn bộ nói về một bài toán mà thôi — Định lý Fermat cuối cùng. Các nhà toán học đã không giải được bài toán này trong 300 năm. Nhìn qua, nó rất đơn giản, vậy mà tất cả các nhà toán học vĩ đại trong lịch sử đã không thể giải được. Đó là một bài toán, mà tôi, một đứa bé 10 tuổi, đã có thể hiểu và tôi đã biết ngay lúc đó rằng tôi không bao giờ bỏ qua được. Tôi phải giải nó.
NOVA: Fermat là ai và định lý cuối cùng của ông ta là gì?
AW: Fermat là một nhà toán học ở thế kỷ 17, người đã viết ghi chú bên lề cuốn sách của ông đưa ra một mệnh đề cụ thể và khẳng định rằng đã chứng minh được. Mệnh đề của ông nói về một phương trình liên quan rất gần với phương trình Pythagoras. Phương trình Pythagoras cho ta:
NOVA: Ông đã bắng đầu tìm kiếm cách chứng minh như thế nào?
AW: Trong thời niên thiếu, tôi cố gắng giải quyết bài toán theo cách mà tôi nghĩ Fermat có lẽ đã làm. Tôi ước đoán là ông ta không biết quá nhiều toán hơn cậu thiếu niên là tôi. Sau đó tôi vào đại học, tôi nhận ra rằng có nhiều người đã nghĩ về bài toán trong suốt thế kỷ 18 và 19 và vì vậy tôi học các phương pháp đó. Nhưng tôi vẫn chẳng đi tới đâu cả. Rồi khi tôi trở thành nhà nghiên cứu, tôi quyết định là tôi nên gác bài toán đó qua một bên. Không phải là tôi quên nó — bài toán vẫn luôn còn đó — nhưng tôi nhận ra là những kỹ thuật sẵn có để giải quyết bài toán đã có từ trong vòng 130 năm nay. Không có vẻ gì là những kỹ thuật đó tiếp cận được cốt lõi của bài toán. Vấn đề khi giải FLT là ở chỗ bạn có thể tốn nhiều năm trời không đi tới đâu. Giải bất cứ bài toán nào cũng tốt, miễn là nó sinh ra những vấn đề toán lý thú kèm theo — cho dù bạn không giải được nội trong ngày đi nữa. Một bài toán được đánh giá là hay dựa trên các vấn đề toán sinh ra hơn là dựa trên bản thân bài toán.
NOVA: Có vẻ như FLT đã được coi là không thể giải được, và các nhà toán học không thể mạo hiểm hao phí để rồi không đi tới đâu. Nhưng rồi vào năm 1986 mọi thứ đã thay đổi. Một bước đột phá bởi Ken Ribet ở University of California at Berkeley đã liên kết FLT với một bài toán chưa giải được khác, đó là giả thuyết Taniyama-Shimura (Taniyama-Shimura conjecture). Ông có nhớ đã phản ứng thế nào trước tin này không?
AW: Đó là một buổi tối cuối mùa hè 1986 khi tôi đang nhấm nháp trà đá (iced tea) ở nhà một người bạn. Trong khi nói chuyện, một cách không chủ ý, người bạn cho tôi hay là Ken Ribet đã chứng minh mối liên hệ giữa Taniyama-Shimura và FLT. Tôi sửng sốt. Ngay lúc đó tôi biết rằng hành trình của đời tôi đã chuyển hướng bởi vì điều đó có nghĩa là để chứng minh FLT, tôi chỉ cần chứng minh giả thuyết Taniyama-Shimura. Điều đó có nghĩa là giấc mơ thời thơ ấu của tôi nay đã là thứ đáng để lao vào. Tôi chỉ biết rằng tôi không thể để điều đó trôi qua. Edit
Source: The Proof, NOVA online
http://www.pbs.org/wgbh/nova/proof/wiles.html
Andrew Wiles đã cống hiến phần lớn sự nghiệp của ông cho việc chứng minh định lý Fermat cuối cùng (Fermat’s Last Theorem - viết tắt là FLT), bài toán nổi tiếng nhất thế giới. Vào năm 1993, ông đã trở nên nổi tiếng khi công bố một cách chứng minh bài toán, nhưng câu chuyện chưa chấm dứt ở đó; một lỗi sai trong tính toán đã làm lung lay công trình cả đời của ông. Andrew Wiles đã nói chuyện với NOVA và kể lại cách ông đã xử lý chỗ sai lầm, và cuối cùng tiến tới để đạt được hoài bão của đời ông như thế nào.
NOVA: Nhiều khám phá khoa học vĩ đại là kết quả của sự ám ảnh, nhưng trong trường hợp của ông, nỗi ám ảnh đó đã bám lấy ông từ lúc ông còn là một đứa bé.
ANDREW WILES: Tôi lớn lên ở Cambridge, Anh quốc, và tình yêu toán học của tôi đã chớm từ những ngày đầu của thời thơ ấu. Tôi yêu thích giải toán ở trường. Tôi thường đem bài về nhà và tự nghĩ ra những đề bài mới. Nhưng bài toán hay nhất mà tôi đã từng tìm thấy, tôi tìm thấy trong thư viện công cộng trong vùng. Tôi lúc đó chỉ đang xem lướt qua khu vực để các sách toán và tôi tìm thấy một cuốn sách này, toàn bộ nói về một bài toán mà thôi — Định lý Fermat cuối cùng. Các nhà toán học đã không giải được bài toán này trong 300 năm. Nhìn qua, nó rất đơn giản, vậy mà tất cả các nhà toán học vĩ đại trong lịch sử đã không thể giải được. Đó là một bài toán, mà tôi, một đứa bé 10 tuổi, đã có thể hiểu và tôi đã biết ngay lúc đó rằng tôi không bao giờ bỏ qua được. Tôi phải giải nó.
NOVA: Fermat là ai và định lý cuối cùng của ông ta là gì?
AW: Fermat là một nhà toán học ở thế kỷ 17, người đã viết ghi chú bên lề cuốn sách của ông đưa ra một mệnh đề cụ thể và khẳng định rằng đã chứng minh được. Mệnh đề của ông nói về một phương trình liên quan rất gần với phương trình Pythagoras. Phương trình Pythagoras cho ta:
NOVA: Ông đã bắng đầu tìm kiếm cách chứng minh như thế nào?
AW: Trong thời niên thiếu, tôi cố gắng giải quyết bài toán theo cách mà tôi nghĩ Fermat có lẽ đã làm. Tôi ước đoán là ông ta không biết quá nhiều toán hơn cậu thiếu niên là tôi. Sau đó tôi vào đại học, tôi nhận ra rằng có nhiều người đã nghĩ về bài toán trong suốt thế kỷ 18 và 19 và vì vậy tôi học các phương pháp đó. Nhưng tôi vẫn chẳng đi tới đâu cả. Rồi khi tôi trở thành nhà nghiên cứu, tôi quyết định là tôi nên gác bài toán đó qua một bên. Không phải là tôi quên nó — bài toán vẫn luôn còn đó — nhưng tôi nhận ra là những kỹ thuật sẵn có để giải quyết bài toán đã có từ trong vòng 130 năm nay. Không có vẻ gì là những kỹ thuật đó tiếp cận được cốt lõi của bài toán. Vấn đề khi giải FLT là ở chỗ bạn có thể tốn nhiều năm trời không đi tới đâu. Giải bất cứ bài toán nào cũng tốt, miễn là nó sinh ra những vấn đề toán lý thú kèm theo — cho dù bạn không giải được nội trong ngày đi nữa. Một bài toán được đánh giá là hay dựa trên các vấn đề toán sinh ra hơn là dựa trên bản thân bài toán.
NOVA: Có vẻ như FLT đã được coi là không thể giải được, và các nhà toán học không thể mạo hiểm hao phí để rồi không đi tới đâu. Nhưng rồi vào năm 1986 mọi thứ đã thay đổi. Một bước đột phá bởi Ken Ribet ở University of California at Berkeley đã liên kết FLT với một bài toán chưa giải được khác, đó là giả thuyết Taniyama-Shimura (Taniyama-Shimura conjecture). Ông có nhớ đã phản ứng thế nào trước tin này không?
AW: Đó là một buổi tối cuối mùa hè 1986 khi tôi đang nhấm nháp trà đá (iced tea) ở nhà một người bạn. Trong khi nói chuyện, một cách không chủ ý, người bạn cho tôi hay là Ken Ribet đã chứng minh mối liên hệ giữa Taniyama-Shimura và FLT. Tôi sửng sốt. Ngay lúc đó tôi biết rằng hành trình của đời tôi đã chuyển hướng bởi vì điều đó có nghĩa là để chứng minh FLT, tôi chỉ cần chứng minh giả thuyết Taniyama-Shimura. Điều đó có nghĩa là giấc mơ thời thơ ấu của tôi nay đã là thứ đáng để lao vào. Tôi chỉ biết rằng tôi không thể để điều đó trôi qua. Edit