Home » » Giải Bài Toán Fermat: Andrew Wiles- Phần 2 - Người dịch: Alligator

Giải Bài Toán Fermat: Andrew Wiles- Phần 2 - Người dịch: Alligator

Written By kinhtehoc on Thứ Tư, 1 tháng 2, 2012 | 02:04

Giải Bài Toán Fermat: Andrew Wiles- Phần 2 - Người dịch: Alligator
NOVA: Vậy là, bởi vì Taniyama-Shimura là một bài toán hiện đại, điều này có nghĩa là giải nó, cũng có nghĩa là cố gắng chứng minh FLT, là việc đáng làm.
AW: Đúng vậy. Chưa ai có đường hướng để tiếp cận Taniyama-Shimura nhưng ít nhất nó cũng thuộc toán học dòng chính. Tôi có thể thử và chứng minh các kết quả, mà, cho dù chúng không giải quyết được toàn bộ, cũng có giá trị toán học. Vậy là sự lãng mạn của FLT, điều đeo đẳng cả đời tôi, nay đã kết hợp với một bài toán được chấp nhận một cách chuyên nghiệp.
NOVA: Tại thời điểm đó ông đã quyết định làm việc biệt lập hoàn toàn. Ông đã không nói với bất cứ ai là ông đang tiến hành tìm chứng minh FLT. Tại sao vậy?
AW: Tôi nhận ra rằng bất cứ điều gì liên quan tới FLT tạo ra quá nhiều sự chú ý. Bạn không thể thật sự chuyên tâm hàng năm trời trừ khi bạn có sự tập trung trọn vẹn, quá nhiều khán giả sẽ phá hủy điều đó.
NOVA: Nhưng chừng như ông đã nói cho vợ ông biết ông đang làm gì?
AW: Vợ tôi chỉ quen tôi khi tôi đã đang giải FLT. Tôi nói cho nàng hay trong tuần trăng mật, chỉ vài ngày sau hôn lễ. Vợ tôi đã từng nghe nói tới FLT, nhưng vào lúc đó nàng không biết gì về ý nghĩa lãng mạn của FLT đối với các nhà toán học, rằng nó đã là cái gai trong da thịt chúng tôi nhiều năm đến thế.
NOVA: Hàng ngày, ông đã xây dựng cách chứng minh của ông như thế nào?
AW: Tôi thường đến với nghiên cứu của tôi, và bắt đầu cố gắng tìm kiếm các quy luật. Tôi thử làm các tính toán giải thích một vài khía cạnh toán học nhỏ. Tôi cố thử ép bài toán vào những hiểu biết trừu tượng rộng hơn sẵn có trong vài phần của toán học có thể làm cho bài toán đang làm rõ ràng sáng sủa hơn. Đôi khi phải đi tìm trong sách coi thử người ta đã làm như thế nào. Đôi khi là câu hỏi để sửa đổi các thứ đi một chút, làm thêm vài phép toán. Và có lúc tôi nhận ra rằng không có điều gì đã làm trước đây có chút ích lợi nào cả. Vậy rồi tôi phải tìm cái gì hoàn toàn mới; những cái đó tới từ đâu quả là điều bí ẩn. Tôi đem bài toán theo trong đầu hầu như luôn luôn. Tôi có thể nghĩ tới nó đầu tiên khi thức dậy buổi sáng, tôi có thể nghĩ về nó suốt ngày, và tôi có thể đang nghĩ về nó khi đi ngủ. Nếu không bị phân tâm, cùng một thứ có thể xoay tới xoay lui trong trí của tôi. Cách duy nhất để thư giãn là khi tôi cùng với các con. Bọn trẻ đơn giản là chẳng hề quan tâm tới Fermat. Chúng chỉ muốn nghe kể chuyện và sẽ chẳng để bạn làm gì khác.
NOVA: Thường thường người ta làm việc theo nhóm và được hỗ trợ bởi những người trong nhóm. Ông đã làm gì khi bị bế tắc?
AW: Khi tôi bị kẹt và không biết phải làm gì tiếp theo, tôi sẽ ra ngoài đi dạo. Tôi thường đi dạo xuống gần hồ. Dạo chơi có một tác dụng rất tốt giúp bạn ở trạng thái thư giãn, nhưng cùng lúc đó cho phép tiềm thức hoạt động. Và thường thường nếu bạn có cái gì đó loé lên trong đầu thì lại không có cái gì để viết hay bàn viết. Tôi luôn có sẵn viết chì và giấy và, nếu tôi thật sự có một ý tưởng, tôi sẽ ngồi xuống một băng ghế và viết vội ra.
NOVA: Vậy là trong 7 năm trời ông đã theo đuổi chứng minh này. Chắc là có những khi thoái chí xen lẫn với những lúc thành công.
AW: Có lẽ tôi có thể mô tả tốt nhất kinh nghiệm nghiên cứu toán học của tôi theo hình ảnh của một chuyến hành trình qua một lâu đài tối tăm chưa được thám hiểm. Bạn bước vào căn phòng đầu tiên của tòa nhà và nó tối mịt mùng. Bạn dò dẫm xung quanh vấp đụng vào bàn ghế, nhưng dần dần bạn biết đuợc từng món tủ giường bàn ghế nằm đâu. Cuối cùng, sau 6 tháng hay cỡ đó, bạn tìm ra cái công-tắc đèn, bạn bật lên, và bỗng nhiên mọi thứ đều sáng rõ. Bạn có thể thấy chính xác bạn đang ở chỗ nào. Thế rồi bạn đi vô căn phòng kế tiếp và mất 6 tháng nữa trong bóng tối. Như vậy mỗi một bước đột phá, mặc dù đôi khi chỉ trong thoáng chốc, đôi khi mất một hai ngày, chúng là những đỉnh điểm của — và không thể tồn tại nếu không có — thời gian nhiều tháng trời mò mẫm loanh quanh trong bóng tối dẫn tới những đột phá đó.
NOVA: Và trong suốt 7 năm, ông đã không bao giờ có thể chắc chắn việc tìm được một chứng minh trọn vẹn.
AW: Tôi thật sự tin rằng tôi đã đi đúng hướng, nhưng điều đó không có nghĩa là tôi nhất thiết có thể đạt được mục đích. Vẫn có thể là các phương pháp cần thiết để tiến hành bước tiếp theo đơn giản là ngoài tầm toán học hiện thời. Cũng có thể các phương pháp tôi cần để hoàn tất chứng minh vẫn chưa được phát minh trong vòng trăm năm nữa. Như vậy cho dù tôi đi đúng hướng chăng nữa, tôi vẫn có thể sinh lầm thế kỷ.
NOVA: Vậy rồi cuối cùng vào năm 1993, ông đã làm được bước đột phá quyết định.
AW: Phải, đó là một buổi sáng cuối tháng 5. Vợ tôi, Nada, ở ngoài với bọn trẻ và tôi ngồi nơi bàn làm việc suy nghĩ về bước cuối cùng của chứng minh. Tôi lúc đó đang ngó lướt qua bài nghiên cứu của tôi và có một câu làm tôi chú ý. Câu đó nhắc tới một công trình vào thế kỷ 19, và tôi bỗng nhiên nhận ra là tôi có thể dùng điều đó để hoàn tất chứng minh. Tôi tiếp tục cho tới chiều và tôi quên đi xuống ăn trưa, và vào khoảng 3 hay 4 giờ chiều, tôi đã thật sự tin tưởng là điều đó giải quyết được vấn đề còn lại. Lúc đó vào cữ trà chiều và tôi xuống nhà và Nada rất ngạc nhiên vì tôi xuống trễ vậy. Thế rồi ...

(to be continued) Edit
Share this article :
 
Support : Creating Website | phuctriethoc | NGUYỄN VĂN PHÚC
Copyright © 2013. NGUYỄN VĂN PHÚC - All Rights Reserved
By Creating Website Published by KINH TẾ HỌC
Proudly powered by NGUYỄN VĂN PHÚC
NGUYỄN VĂN PHÚC : Website | Liên hệ | phuctriethoc@gmail.com
Proudly powered by Triết học kinh tế
Copyright © 2013. NGUYỄN VĂN PHÚC - All Rights Reserved